SA-SVM based automated diagnostic System for Skin Cancer
نویسندگان
چکیده
Early diagnosis of skin cancer is one of the greatest challenges due to lack of experience of general practitioners (GPs). This paper presents a clinical decision support system aimed to save time and resources in the diagnostic process. Segmentation, feature extraction, pattern recognition, and lesion classification are the important steps in the proposed decision support system. The system analyses the images to extract the affected area using a novel proposed segmentation method H-FCM-LS. The underlying features which indicate the difference between melanoma and benign lesions are obtained through intensity, spatial/frequency and texture based methods. For classification purpose, self-advising SVM is adapted which showed improved classification rate as compared to standard SVM. The presented work also considers analyzed performance of linear and kernel based SVM on the specific skin lesion diagnostic problem and discussed corresponding findings. The best diagnostic rates obtained through the proposed method are around 90.5 %.
منابع مشابه
Texture Analysis Based Automated Decision Support System for Classification of Skin Cancer Using SA-SVM
Early diagnosis of skin cancer is one of the greatest challenges due to lack of experience of general practitioners (GPs). This paper presents a clinical decision support system aimed to save lives, time and resources in the early diagnostic process. Segmentation, feature extraction, and lesion classification are the important steps in the proposed system. The system analyses the images to extr...
متن کاملIntelligent Diagnosis of Actinic Keratosis and Squamous Cell Carcinoma of the Skin, Using Linear and Nonlinear Features Based on Image Processing Techniques
Introduction: Most skin cancers are treatable in the early stages; thus, an early and rapid diagnosis can be very important to save patients’ lives. Today, with artificial intelligence, early detection of cancer in the initial stages is possible. Method: In this descriptive-analytical study, a computerized diagnostic system based on image processing techniques was presented, which is much more ...
متن کاملIntelligent Diagnosis of Actinic Keratosis and Squamous Cell Carcinoma of the Skin, Using Linear and Nonlinear Features Based on Image Processing Techniques
Introduction: Most skin cancers are treatable in the early stages; thus, an early and rapid diagnosis can be very important to save patients’ lives. Today, with artificial intelligence, early detection of cancer in the initial stages is possible. Method: In this descriptive-analytical study, a computerized diagnostic system based on image processing techniques was presented, which is much more ...
متن کاملA Novel Method for Skin Lesion Segmentation
Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...
متن کاملA Novel Method for Skin Lesion Segmentation
Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015